AI Alignment and Incomplete Contracting

Dylan Hadfield-Menell UC Berkeley, EECS and Center for Human-Compatible AI

Gillian K. Hadfield USC Law and Economics Faculty Affiliate, Center for Human-Compatible AI

GETS May 2018

AV Liability

How should we regulate AI?

Algorithmic Fairness

AW Campaign

How can we regulate Al?

How do we build AI systems that can interface with human normative systems?

Normativity: systems for classifying behavior as sanctionable or not

An engineering research program

÷

A social science research program

The reward design problem

Figure credit: Jack Clark and Dario Amodei, "Faulty Reward Functions in the Wild" OpenAl Blog (December 21, 2016)

The reward design problem

Figure credit: Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell and Anca Dragan, "Inverse Reward Design" (NIPS 2017) Misalignment — between individual actions and social welfare is fundamental to economic analysis 1st theorem of welfare economics (Arrow, Debreu 1951): Perfect & complete markets achieve alignment

Principal-agent analysis focuses on what to do when markets (contracts) are imperfect & incomplete

The contract design problem

Misspecification is unavoidable and pervasive

Optimal reward design is key challenge (Singh et al 2010)

Strategic behavior

Incomplete — Exploitation of gaps

Sub-optimal behavior

Strategic behavior

Misspecified Reward Function of gaps

Sub-optimal behavior

Why are contracts incomplete?

- Bounded rationality (can't think of all contingencies)
- Costly cognition/drafting
- Non-contractibility (variables not describable/verifiable to enforcer
- Strategic behavior
- Planned renegotiation
- Planned resolution of vagueness/gaps by third-party in future

Why are contracts incomplete?

- Bounded rationality (can't think of all contingencies)
- Costly cognition/drafting
- Non-contractibility not describable/observable)
- Strategic behavior
- Planned renegotiation
- Planned completion by third-party in event of dispute

Why are rewards misspecified?

- Bounded rationality (negative side effects)
- Costly engineering/design
- - Adversarial design
 - Planned iteration on rewards
 - Planned completion by thirdparty

Econ theory insights for weakly strategic AI

- 1. Property Rights
 - Allocate property rights to agent whose whose non-contractible actions have bigger impact (Grossman & Hart 1986, Hart & Moore 1988)
 - Best solution may not reside in more finely tuned contract
 - Sometimes: sell the firm to agent
 - Property right = ultimate (residual) reward
 - Allocation of property rights = transforming agent's utility function

- Can we incorporate information from global return to task?
 - e.g. platform engagement: short-term (clicks) may damage long-term (Ananny & Crawford 2016)
 - "Selling Facebook to its algorithms" = endow algorithms with broad set of values users, advertisers, etc. care about
 - e.g. mistagging photos: add info about impact on network size, publicity
 - e.g. fair algorithms: add broader information on human valuation

- 2. Measurement and Multi-Tasking
 - Sometimes optimal to reduce incentives on measured tasks to reduce distortion on unmeasurable task (Holmstrom & Milgrom 1991, Baker et al 1994)

- What's the task?
 - Driving to destination at reasonable speed without crashing?
 - + facilitating traffic flow
- May want to use sub-optimal (or even omit) rewards for easily measurable (components of) tasks if important outcomes cannot be rewarded
 - e.g. sub-optimal rewards for speed in autonomous car so unreliable rewards for courteous driving to have maximum effect?

Econ theory insights for strongly strategic AI

- 3. Control Rights
 - Sometimes optimal for principal to commit to remain uninformed and therefore in poor position to intervene (Aghion & Tirole 1997)

AI?

- Interruptibility: Al's prediction of human intervention based on observed human behavior (Orseau & Armstrong 2016)
 - Agent's belief about what human knows also matter?
 - Incentives for AI to share information (or not) (Hadfield-Menell et al 2017)
 - Can humans have info that robots ignore?

- 4. Costly signaling
 - "Good" agents can credibly signal type by choice of contract when "good" type has lower cost of performance than "bad" (Spence 1973)

AI?

- Cost of human intervention is higher for less than more aligned AI
 - Can we use willingness of AI to seek human input as signal of alignment?

- 5. Renegotiation
 - Initial contract set the terms at which agents can be "bought off" to renegotiate in the future (Hart 1988)
- AI?
 - Theoretical challenge: Shutdown problem (Soares 2015, Armstrong 2015)
 - Practically, can anticipating buyout conditions inform initial reward design?

Insights from the law of incomplete contracting

Contracts are embedded in social and institutional structures (Granovetter 1985)

Relational contracts (Macaulay 1963, Macneil 1974, Williamson 1975)

- •Not only *express* but also *interpreted* and *implied* terms
- •Supplied by law and relational norms

Dario Amodei et al, "Concrete Problems in Al Safety" (2016)

Dario Amodei et al, "Concrete Problems in Al Safety" (2016)

How do humans do it?

What makes incomplete contracting rational?

Implied terms

Human contracts rely on *tons* of structure

- e.g. "what was it reasonable to think the parties had in mind when they agreed"
- "reasonable" (and other gap-fillers) provided by institutions (norms, law)

ጸ

Can we build AIs that can similarly fill in their reward functions?

Able to:

- Replicate human process of reading and predicting classification of behavior in human normative system?
- Assign negative weight to actions classified as sanctionable?