
Algorithms and The Law

Deven R. Desai

FEAR and OPACITY

License: Public Domain

Source: WikiMedia

Author: Denelson83

https://commons.wikimedia.org/wiki/File:Auto_Racing_Black_Box.svg
https://commons.wikimedia.org/wiki/User:Denelson83

Critics’ Premise

Algorithms combined with data analytics have

taken center stage and now “are used to make

decisions for us, about us, or with us,” in sensitive

and subjective areas

 Health-care,

 Employment,

 Credit,

 National Security,

 Networked Devices,

 News, and

 More

Concerns

Power

Structure of Society

Fairness

Welfare

Are the Concerns New?

License: Public Domain

Source: WikiMedia

Author: Angelica Kaufmann

Papirius Praetextatus Entreated by his

Mother to Disclose the Secrets of the

Deliberations of the Roman Senate

https://commons.wikimedia.org/wiki/File:Papirius_Praetextatus_Entreated_by_his_Mother_to_Disclose_the_Secrets_of_the_Deliberations_of_the_Roman_Senate_by_Angelica_Kauffman.jpg

Critics’ Premise – Maybe A New Problem

License: Creative Commons Attribution-Share Alike 3.0 Unported license

Source: WikiMedia

Author: Camelia.boban

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:BigData_2267x1146_trasparent.png
https://commons.wikimedia.org/wiki/User:Camelia.boban

Exemplary Issues

Use Code to Discriminate, Suppress

Speech, Engage in other Prohibited Acts

License: Public Domain

Source: WikiMedia

Author: U.S. government

A HOLC 1936 security map of Philadelphia showing redlining

of lower income neighborhoods. Households and businesses in

the red zones could not get mortgages or business loans.

https://commons.wikimedia.org/wiki/File:Home_Owners'_Loan_Corporation_Philadelphia_redlining_map.jpg
https://en.wikipedia.org/wiki/Philadelphia

Solution: Transparency!

License: Creative Commons Attribution-Share Alike 3.0 Unported license

Source: WikiMedia

Author: L'Epee clock

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Duel_QP_LD_white.JPG
https://commons.wikimedia.org/w/index.php?title=User:L'Epee_clock&action=edit&redlink=1

Solution: Transparency?

The general idea that algorithmic systems are

powerful and opaque has led to claims “that

virtually any algorithm may deserve scrutiny,” but

consensus on

 what sort of scrutiny is needed,

 whether different areas affected by algorithms

require different solutions, and

 whether algorithms, other factors, or both are the

cause of the claimed problems,

is lacking.

Against Transparency

From a technical perspective exposing algorithms

to the sun will not only fail to deliver critics’ desired

results but also may create the illusion of clarity in

cases where clarity is not possible.

Roadmap

 Algorithms

 Solutions

 Challenges

Algorithms do not = Magic

“The next time you hear someone talking about

algorithms, replace the term with “God” and ask

yourself if the meaning changes. Our supposedly

algorithmic culture is not a material phenomenon so

much as a devotional one.”

– Ian Bogost, The Atlantic (January 2015)

Title: The Adoration of the

Golden Calf

License: Public Domain

Source: WikiMedia

Author: Nicolas Poussin,

(1633)

https://commons.wikimedia.org/wiki/File:GoldCalf.jpg

Algorithms Basic Points

 An algorithm is a step-by-step process and

“each of the steps must be precise, requiring no

human intuition or guesswork.”

Algorithms Not All the Same

 Steps of brushing teeth qualify yet

 Humans “might be able to tolerate it when an

algorithm is imprecisely described, but a

computer cannot.”

 As Thomas Cormen puts it, “We want two things

from a computer algorithm: given an input to a

problem, it should always produce a correct

solution to the problem, and it should use

computational resources efficiently while

doing so.”

Correctness

 Correctness does not work the way policy critics

would like.

 An algorithm is correct depending on a

specification.

Example

 Consider an algorithm to sort a set of numbers in

ascending order.

 An algorithm that shuffled the numbers 5, 3, 4, 2,

1 would sometimes deliver the correct outcome,

but it would not be a correct sorting algorithm.

 Even a broken clock is correct twice a day.

Example

 In another case, the algorithm may be able to

sort a set of numbers but crash when a duplicate

number is entered.

 Thus the algorithm may handle 5, 3, 4, 2, 1 and

sort it to return 1, 2, 3, 4, 5. But on the input 5, 3,

4, 1, 1, the algorithm would crash and provide

no output.

 This program is not a correct sorting function,

and yet it also never returns an incorrect output.

Practical Wall

What is Correct for Policy?

To ask that an algorithm should not “discriminate”

or yield some other result prohibited by legal rules,

requires that a precise statement, or specification,

be provided so that the request is workable for

computer scientists.

Surprise to Some

We can posit that both a precise specification and

a complete system are available and find that

nonetheless it is impossible to test whether the

system will yield a certain outcome or even did

yield certain outcomes that have already

happened, a basic function of all auditing tools.

Surprise to Some

Thus we can see that the idea of testing an

algorithm to show that it does not “discriminate” or

yield some other result prohibited by legal rules is

unworkable.

Specific Limits

 Treat unlawful discrimination as crashes—

problems any programmer wishes to avoid

 The cause behind the crash, the bug, can be

controlled for, but it is still impossible to catch all

bugs.

Irony

 When asked to catch things which might lead to

a crash, we reach the sort of precision that the

physicist, mathematician, or logician seeks, but

the outcome is that we can show that we cannot

show certain things.

 In the specific case of software, because

detecting a potential crash is an undecidable

problem, “it is provably impossible for any

software-checking tool to detect all possible

crashes in all programs.”

Not a Free Pass

 An external, general way (a “transparency tool”)

to test may not be available but

 Computer science has rich tools to mitigate the

problem (Kroll et. al 2016)

Ways to Mitigate

 We can ask for a commitment or guarantee that

certain software was built a specific way and

wish to verify that promise. 

 Requires that one starts with or builds programs

that are analyzable.

 Then computer science can offer ways to give a

100% guarantee that something is true about a

piece of software under certain circumstances.

Ways to Mitigate: Example

 To review an action after-the-fact, you need an

audit log.

 We can use cryptographic commitment and

zero-knowledge proofs to know that the audit log

corresponds to what actually happened

Ways to Mitigate: Example

A passive, outside observer

 Can see that the audit log is correct at the time it

is created (i.e., at the time the decision is made),

and

 Can see that the audit log corresponds to a

process with certain desirable properties, such

as the same decision policy was applied in all

cases.

Limits

 What to do about systems already in place but

not designed for evaluation?

 Already built system (Search, spam filters, ads

delivery, social media feeds)

 Unknown source (malware)

Challenges – Dynamic Systems

 What to do about systems that are dynamic and

change over time?

Source: Lawrence Livermore National Laboratory

Title: Image for Technical Focus Area: Machine

Learning and Pattern Analysis

Author: U.S. government

https://casis.llnl.gov/technical_focus_area/machine_learning

Questions

 Does the nature of learning systems mean we

will only allow them to be used for non-sensitive

areas?

 Are the CS techniques for fairness (e.g.

randomization) inherently in tension with

certainty or pre-commitment that may be needed

by law and policy for auditing?

Specific Questions

 Does it matter whether a public or

private entity is using an algorithmic

process of concern?
 Government Visa Lottery

 Online Ads

 Engine performance (e.g., VW)

 Cell phone battery and signal strength (e.g.

Apple)

 Edge Case: Credit system

Conclusion

Together CS and law and policy need to adapt

governance to accommodate dynamic systems

while still mitigating if not preventing undesired

outcomes.

Conclusion

 Must understand that algorithms and data

science are not scary, black magic but need to

be better explained by the CS community

 Where possible, law and policy needs to offer

concrete explanations and stipulations of when

regulation will apply and what are prohibited

outcomes

 By better working within the technology to be

regulated, we will pose problems to solve rather

than solutions that will be rejected, or worse

provide false comfort while missing the practice

at issue

