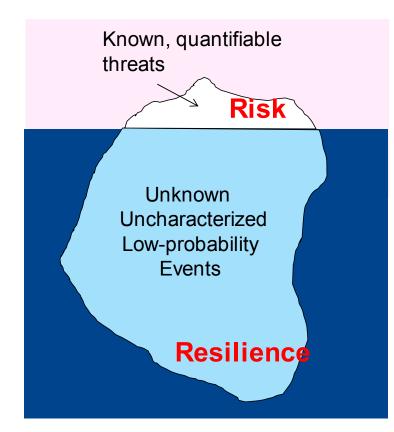
Defining Resilience for Emerging Technologies

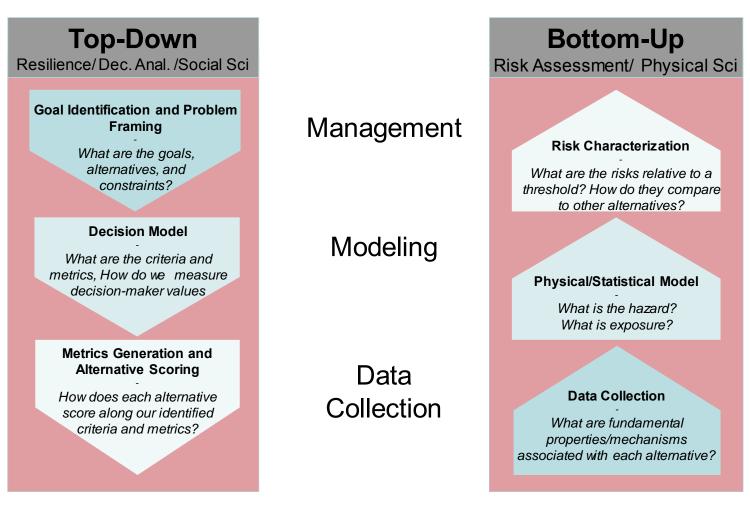

Igor Linkov, PhD

Risk and Decision Science Focus Area Lead, USACE, <u>ilinkov@yahoo.com</u>

Adjunct Professor, Carnegie Mellon University


Thomas Seager, PhD

Arizona State University



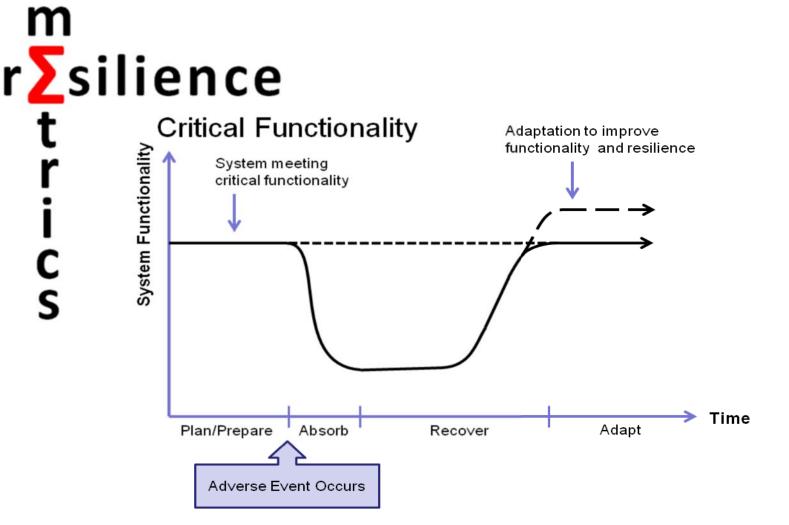
Future

- **Sustainable Nanomanufacturing:** introduce sustainability/resilience considerations early into manufacturing process.
- Challenge: Conflicting objection and product performance.
- Solution: Integrated Top-Down Framework using tools
- Tools: Computational Chemistry, product design and Life Cycle WITH Decision Analysis

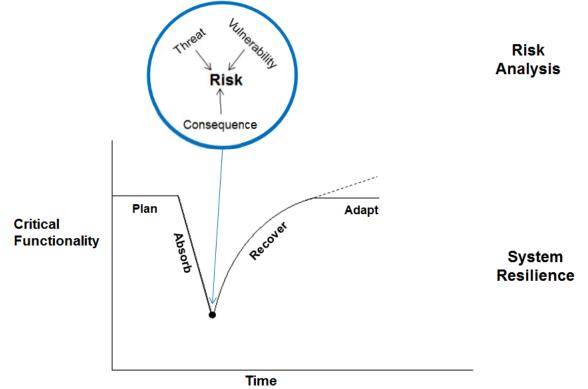
Environment/Technology Challenges and Tools

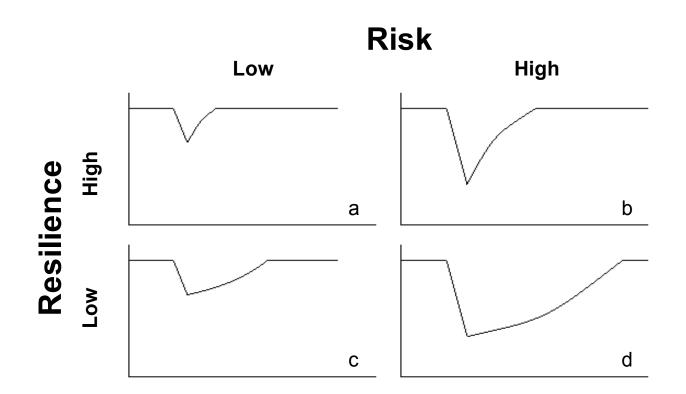
Linkov et al., 2014

Outline

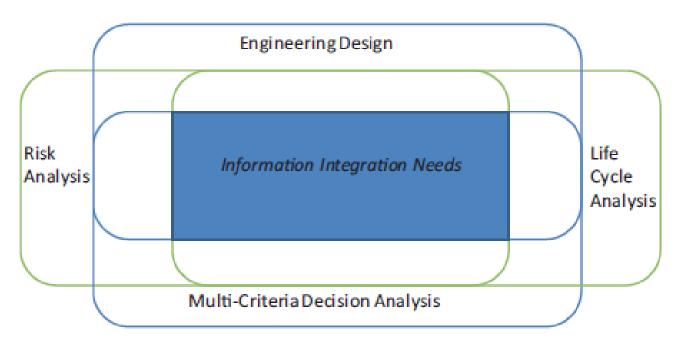

From Risk to Resilience: Definitions

- Risk
 - Conceptualization
 - Risk Assessment Case Studies
 - Problems with Risk-based Approaches
- Resilience
 - Conceptualization
 - Resilience Matrix Approach and Jamaica Bay Case
 - Network Science Approach
- Relevance to Emerging Technologies
- Discussion


Risk Management Challenges


- Requires specific knowledge and quantification of all three components
- No temporal component
- Modern system complexity and threat uncertainty make risk management difficult and expensive.

Risk and Resilience are Different, but Complimentary


After Linkov et al, Nature Climate Change 2014

Traditional risk management focuses on planning and reducing vulnerabilities. Resilience management puts additional emphasis on speeding recovery and facilitating adaptation.

After Linkov et al, Nature Climate Change 2014

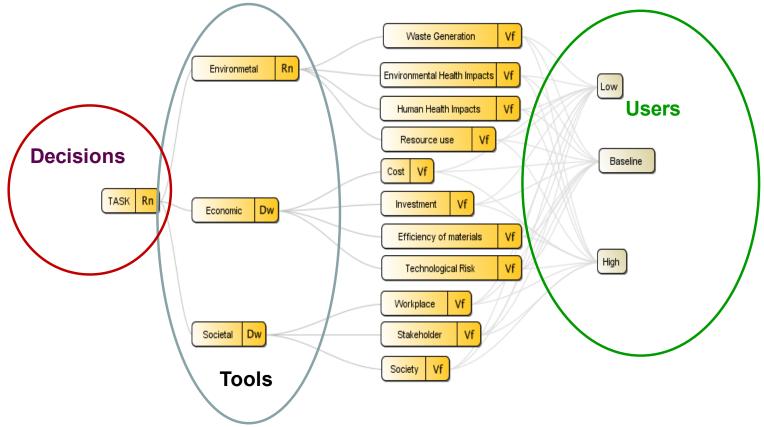
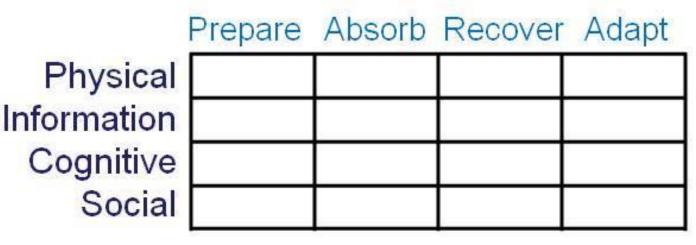

Resilient Design in the Context of Nano

Figure 2 Integration of risk and life cycle analyses to guide engineering design using multi criteria decision analysis (after [21]).

After Fadel et al, Nano Today, 2014

Sustainable Nanomanufacturing as Triple Bottom Line



Subramanian, Linkov et al (2014), Nano Today

Resilience: Matrix Approach

Resilience Matrix:

Analyze the functionality of each **domain** of the system across each **stage** of the event timeline

- Uses general metrics for measuring relative system resilience
- Different from vulnerability assessment threats unknown
- Useful for identifying weak areas and prioritizing investment to improve overall resilience

General Form of Resilience Matrix

Adverse Event										
Time										
Previous Cycle	Plan/Prepare	Absorb	Recover	Adapt						
Physical .	 State and capability of equipment and personnel, network structure 	Event recognition and system performance to maintain function	System changes to recover previous functionality	Changes to improve system resilience						
Information .	Data preparation, presentation, analysis, and storage	 Real-time assessment of functionality, anticipation of cascading losses and event closure 	 Data use to track recovery progress and anticipate recovery scenarios 	 Creation and improvement of data storage and use protocols 						
Cognitive .	 System design and operation decisions, with anticipation of adverse events 	 Contingency protocols and proactive event management 	 Recovery decision- making and communication 	 Design of new system configurations, objectives, and decision criteria 						
Social .	 Social network, social capital, institutional and cultural norms, and training 	 Resourceful and accessible personnel and social institutions for event response 	 Teamwork and knowledge sharing to enhance system recovery 	 Addition of or changes to institutions, policies, training programs, and culture 						

From Linkov et al, Env. Sci. & Tech 2013

Assessment using Decision Analysis

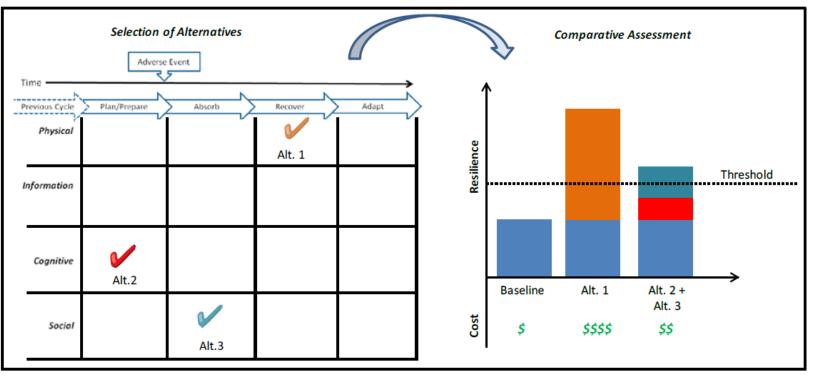


Figure 5: Comparative Assessment of Resilience-Enhancing Alternatives

Use developed resilience metrics to comparatively assess the costs and benefits of different courses of action

Prioritize Efforts

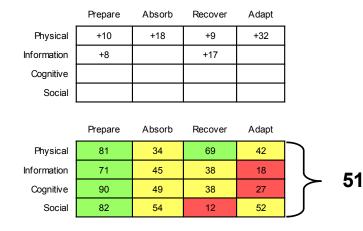
 Use matrix form to identify weaknesses in resilience.

• Ex:	Limiting Bioavailability in Environm						
	Prepare	Absorb	Recover	Adapt			
Physical	90%	81%	62%	10%			
Information	80%	19%	23%	75%			
Cognitive	68%	95%	22%	40%			
Social	76%	88%	92%	34%			

nent

(Hypothetical Values)

How it works: Material/Technology **Evaluation**


 Baseline assessment can be used to evaluate proposed materials/technologies

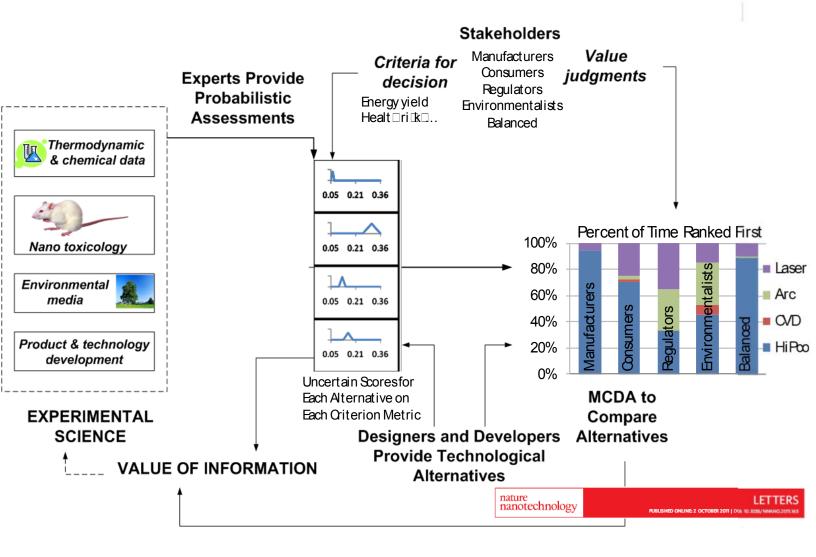
Social

+3

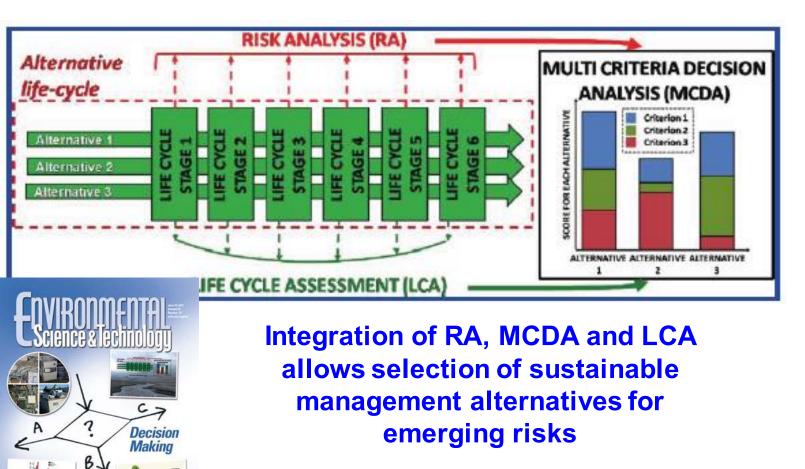
Material/technology 1

Prepare Absorb Recover Adapt Physical Information +5 +15 +22 Cognitive

Material/Technology 2


	Prepare	Absorb	Recover	Adapt		
Physical	71	6	60	10	\square	
Information	63	50	36	40		47
Cognitive	90	49	38	27		4/
Social	85	54	24	73	V	

+12


+21

7

Framework for Integrating Physical & Social Science To Guide Product Design and Manufacturing

Framework for Tools Integration

after Linkov and Seager, 2011

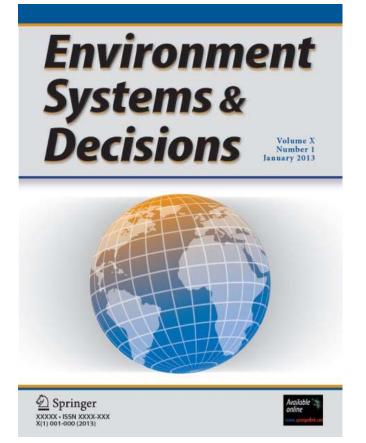
ACS Publications

References - Nano

BOOK:

Linkov, I., Steevens, J. (2009). Nanotechnology: Risks and Benefits. Springer, Amsterdam.

Papers:


- Hristozov, D., Zabeo, A., Foran, C., Critto, A., Marcomini, A., Linkov, I. (2014). A weight of evidence approach for hazard screening of engineered nanomaterials. *Nanotoxicology* 8:78-87.
- Linkov, I., Bates, M., Trump, B., Seager, TP, Chappell, M., Keisler, J. (2013). For Nanotechnology Decisions, Use Decision Analysis. *NanoToday* 8: 5-10.
- Linkov, I., Tkachuk, A., Canis, L., Mohan, M., Keisler, J. (2012) Risk Informed Decision Framework for Integrated Evaluation of Countermeasures against CBRN Threats. *Journal of Homeland Security and Emergency Management*. 9: 1547-7355.
- Mohan, M, Trump, B.D., Bates, M., Monica, J., and Linkov, I. (2012). Integrating Legal Liabilities in Nanomanufacturing Risk Management. *Environmental Science and Technology* 46:7955-62.
- Linkov, I., Bates, M.E., Canis, L.J., Seager, T.P., and Keisler J.M. (2011). A Decision-directed Approach for Prioritizing Research into the Impact of Nanomaterials on the Environment and Human Health. *Nature Nanotechnology* 6:784-787.
- Linkov, I., Bates, M., Trump, B., Seager, TP, Chappell, M., Keisler, J. (2013). For Nanotechnology Decisions, Use Decision Analysis. *NanoToday* 8: 5-10.
- Grieger K.D., Linkov, I., Foss Hansen, S., Baun, A. (2012). Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. *Nanotoxicology* 6:196–212.
- Valverde, J.L., Linkov, I. (2011). Nanotechnology: Risk Assessment And Risk Management Perspectives. *Nanotechnology: Law and Business* 8:25-47.
- Linkov, I., Seager, T. (2011). Coupling Multi-Criteria Decision Analysis, Life Cycle Assessment and Risk Assessment for Emerging Threats. *Environmental Science and Technology* 45:5068–5074.
- Canis, L., Seager, T., and Linkov, I. (2010). Application of Stochastic Multiattribute Analysis to Assessment of Single Walled Carbon Nanotube Synthesis Processes. *Environmental Science and Technology* 44: 8704–8711.
- Linkov, I., Satterstrom, F.K., Monica, J.C., Jr., Foss Hansen, S. and Davis, T.A. (2009). Nano Risk Governance: Current Developments and Future Perspectives. *Nanotechnology: Law and Business* 6:203-220.
- Tervonen, T., Linkov, I. Figueira, J., Steevens, J., Chappell, M., Merad, M. (2009). Risk-based Classification System of Nanomaterials. *J. of Nanoparticle Research* 11:757-766.
- Seager, T., Linkov, I. (2008). Coupling Multi-Criteria Decision Analysis and Life Cycle Assessment For Nanomaterials. J. of Industrial Ecology 12:282-285
- Rajagopalan, G., Bouchard, D, Gu, A, Linkov, I., Mackay, C., Sellers, K. (2008). Effects of Nanoparticles on the Wastewater Treatment Industry. *Technical Practice Update*. Water Environment Federation.

18

References

- Linkov, I., Eisenberg, D. A., Bates, M. E., Chang, D., Convertino, M., Allen, J. H., Flynn, S. E., Seager, T. P. (2013). Managing resilience to meet national needs. *Environmental Science & Technology* 47:10108-10110.
- Park, J., Seager, TP, Rao, PCS, Convertino, M., Linkov, I. (2013). Contrasting risk and resilience approaches to catastrophe management in engineering systems. Risk Analysis 33: 356–367.
- Linkov, I., Eisenberg, D. A., Plourde, K., Seager, T. P., Allen, J., Kott, A (2014). Resilience Metrics for Cyber Systems. *Environment, Systems and Decisions* 33:471-476.
- Roege, P., Collier, Z.A., Mancillas, J., McDonagh, J., Linkov, I. (2014). Metrics for Energy Resilience. *Energy Policy*
- Linkov, I, Kröger, W., Levermann, A., Renn, O. et al. (2014). Changing Resilience Paradigm. *Nature Climate Change*.
- Eisenberg, D. A., Park, J., Chang, D., Bates, M. E., Seager, T. P., Linkov, I. (2014). Military solutions to federal agency needs: Metrics of resilience. Solutions.

Call for Papers: Springer's Environment, Systems and Decisions

ESD provides a catalyst for research and innovation in cross-disciplinary and transdisciplinary methods of decision analysis, systems analysis, risk assessment, risk management, risk communication, policy analysis, environmental analysis, economic analysis, engineering, and the social sciences.

20

The Society for Risk Analysis invites you to join us to the

World Congress on Risk 2015 in Singapore

> Risk Analysis for Sustainable Innovation.

Save the Date:

July 19-23, 2015

Call for Participation: SRA World Congress on Risk IV

In 2003, the International Society for Risk Analysis (SRA) launched a series of World Congresses on Risk, in partnership with other scientific societies, professional organizations, governments, corporations, and foundations. SRA hosted the first World Congress on Risk in Brussels, Belgium, in 2003, and has held two subsequent World Congresses since that time.

SRA will hold the fourth in the series of World Congresses on Risk from the 19th to 23rd of July 2015 in Singapore. The theme of the World Congress on Risk 2015 is: "Risk Analysis for Sustainable Innovation." By selecting this theme, SRA hopes to focus attention on risks of importance to global development with specific attention to the experiences of developing countries, in such domains as:

.